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Abstract. In spite of the compelling achievements that deep neural net-
works (DNNs) have made in medical image computing, these deep models
often suffer from degraded performance when being applied to new test
datasets with domain shift. In this paper, we present a novel unsuper-
vised domain adaptation approach for segmentation tasks by designing
semantic-aware generative adversarial networks (GANs). Specifically, we
transform the test image into the appearance of source domain, with the
semantic structural information being well preserved, which is achieved
by imposing a nested adversarial learning in semantic label space. In this
way, the segmentation DNN learned from the source domain is able to be
directly generalized to the transformed test image, eliminating the need
of training a new model for every new target dataset. Our domain adapta-
tion procedure is unsupervised, without using any target domain labels.
The adversarial learning of our network is guided by a GAN loss for map-
ping data distributions, a cycle-consistency loss for retaining pixel-level
content, and a semantic-aware loss for enhancing structural information.
We validated our method on two different chest X-ray public datasets for
left/right lung segmentation. Experimental results show that the segmen-
tation performance of our unsupervised approach is highly competitive
with the upper bound of supervised transfer learning.

1 Introduction

Deep neural networks (DNNs) have achieved great success in automated med-
ical image computing [4,11], attributing to their learned highly-representative
features. However, due to domain shift, DNNs would suffer from performance
degradation when being applied to new datasets, which are acquired with differ-
ent protocols or collected from different clinical centers [6,9]. Actually, domain
adaptation has been an important research topic in medical image computing
and the traditional automated methods also encountered the same poor general-
ization problem. For example, Philipsen et al. [10] studied the influence of data
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distribution variations across chest radiography datasets on traditional segmen-
tation methods based on k-nearest neighbor classification as well as active shape
modeling.

To generalize DNNs trained on a source domain to a target domain, researches
have been emerging for domain adaptation of deep learning models. A typical
method is supervised transfer learning (STL), which fine-tunes the pre-trained
source domain model with additional labeled target domain data. Remarkably,
Ghafoorian et al. [6] studied on the number of fine-tuned layers to reduce
the required amount of annotations for brain lesion segmentation across MRI
datasets. However, the STL approaches still rely on extra labeled data, which is
expensive or sometimes impractical to obtain.

Instead, unsupervised domain adaptation (UDA) is more appealing to gener-
alize models in clinical practice. Early works have employed histogram matching
to make test data resemble the intensity distribution of source domain data [15].
Recently, the generative adversarial networks (GANs) have made great achieve-
ments in generating realistic images and adversarial learning excels in mapping
data distributions for domain adaptation [1,5,14]. In medical field, adversarial
frameworks have been proposed to align feature embeddings between source and
target data and presented promising results on cross-protocol brain lesion seg-
mentation [9] and cross-modality cardiac segmentation [3]. Recent works adopted
CycleGAN [16] as a data augmentation step to synthesize images from source
domain to target domain, and used the pair of synthetic image and correspond-
ing source label to train a segmentation model for target domain [2,7]. However,
the synthetic images can be distorted on semantic structures, because the pure
CycleGAN did not explicitly constrain the output of each single generator inside
the cycle.

In this work, we propose a semantic-aware generative adversarial networks for
unsupervised domain adaptation (named SeUDA) of medical image segmenta-
tion. Our method detaches the segmentation DNN from the domain adaptation
process, and does not require any label from the test set. Given a test image,
our SeUDA framework conducts image-to-image transformation to generate a
source-like image which is directly forwarded to the established source DNN. To
enhance the preservation of structural information during image transformation,
we improve CycleGAN with a novel semantic-aware loss by embedding a nested
adversarial learning in semantic label space. We validated our SeUDA on two
different chest X-ray public datasets for lung segmentation. The performance of
our unsupervised method exceeds the UDA baseline and is highly competitive
with that of the supervised transfer learning. Last but not least, our transformed
image results are visually observable, which sheds the light on the explicit intu-
ition of our proposed method.

2 Method

Given the source domain images xs∈X s and the corresponding labels ys∈Y, we
train a DNN model, denoted by fs, which learns to segment the input images.
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Fig. 1. The overview of our unsupervised domain adaptation framework. Left: the seg-
mentation DNN learned on source domain; Middle: the SeUDA where the paired gen-
erator and discriminator are indicated with the same color, the blue/green arrows illus-
trate the data flows from original images (xt/xs) to transformed images (xt→s/xs→t)
then back to reconstructed images (x̂t/x̂s) in cycle-consistency loss, the orange part
is the discriminator for the semantic-aware adversarial learning; Right: the inference
process of SeUDA given a new target image for testing.

In UDA, we have unlabeled target images xt ∈ X t whose intensity distribu-
tions (or visual appearances) are not the same as the source domain data.
Figure 1 presents an overview of our proposed SeUDA framework, which adapts
the appearance of xt to source image space X s, so that the established fs can
be directly generalized to the transformed image.

2.1 Segmentation Network Established on Source Domain

Our segmentation DNN model (referred as segmenter) is detached from the learn-
ing of our domain adaptation GANs. Compared with the integrated approaches,
this advantage of an independent segmenter enables much more flexibility when
designing a high-performance network architecture. In this regard, we establish
a state-of-the-art segmentation network which makes complementary use of the
residual connection, dilated convolution and multi-scale feature learning [11].

The backbone of our segmenter is modified ResNet-101. We replace the stan-
dard convolutional layers in the high-level residual blocks with the dilated con-
volutions. To leverage features with multi-scale receptive fields, we replace the
last fully-connected layer with four parallel 3×3 dilated convolutional branches,
with a dilation rate of {6, 12, 18, 24}, respectively. An upsampling layer is added
in the end to produce dense predictions for the segmentation task. We start with
32 feature maps in the first layer and double the number of feature maps when
the spatial size is halved or the dilation convolutions are utilized. The segmenter
is optimized by minimizing the pixel-wise multi-class cross-entropy loss of the
prediction fs(xs) and ground truth ys with standard stochastic gradient descent.
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2.2 Image Transformation with Semantic-Aware GANs

After obtaining fs which maps the source input space X s to the semantic label
space Y, our goal is to make it generally applicable to new target datasets.
Given that annotating medical data is quite expensive, we conduct the domain
adaptation in an unsupervised manner. Specifically, we map the target images
towards the source data space. The generated new image xt→s appears to be
drawn from X s while the content and semantic structures remain unchanged. In
this way, we can directly apply the well-established model fs on xt→s without
re-training and get the segmentation result for xt.

To achieve this, we first construct a generator Gt→s and a discriminator Ds.
The generator aims to produce realistic transformed image xt→s = Gt→s(xt).
The discriminator competes with the generator by trying to distinguish between
the fake generated data xt→s and the real source data xs. The GAN corresponds
to a minimax two-player game and is optimized via the following objective:

LGAN(Gt→s,Ds) = Exs [logDs(xs)] + Ext [log(1 − Ds(Gt→s(xt)))], (1)

where the discriminator tries to maximize this objective to correctly classify the
xt→s and xs, while the generator tries to minimize log(1−Ds(Gt→s(xt))) to learn
the data distribution mapping from X t to X s.

Cycle-consistency adversarial learning. For image transformation, the gen-
erated xt→s should also preserve the detailed contents in the original xt. Inspired
by the CycleGAN [16] which sets the state-of-the-art for unpaired image-to-
image transformation, we employ the cycle-consistency loss during the adversar-
ial learning to maintain the contents with clinical clues of the target images.

Inversely, we build a source-to-target generator Gs→t and a target dis-
criminator Dt, so that the transformed image can be translated back to the
original image. This pair of models are trained with a same-way GAN loss
LGAN(Gs→t,Dt) following the Eq. (1). In this regard, we derive the cycle-
consistency loss which encourages Gs→t(Gt→s(xt))≈xt and Gt→s(Gs→t(xs))≈xs

in the transformation:

Lcyc(Gt→s,Gs→t) = Ext [||Gs→t(Gt→s(xt)) − xt||1]+Exs [||Gt→s(Gs→t(xs)) − xs||1],
(2)

where the L1-Norm is employed for reducing blurs in the generated images.
This loss imposes the pixel-level penalty on the distance between the cyclic
transformation result and the input image.

Semantic-aware adversarial learning. In our proposed SeUDA, we apply
the established fs to xt→s which is obtained by inputting xt to Gt→s. The image
quality of xt→s and the stability of Gt→s are crucial for the effectiveness of
our method. Therefore, besides the cycle-consistency loss which composes both
generators and constraints the cyclic input-output consistency, we further try to
explicitly enhance the intermediate transformation result xt→s. Specifically, for
our segmentation domain adaptation task, we design a novel semantic-aware loss
which aims to prevent the semantic distortion during the image transformation.
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In our unsupervised learning scenario, we establish a nested adversarial learn-
ing module by adding another new discriminator Dm into the system. It distin-
guishes between the source domain ground truth lung mask ys and the predicted
lung mask fs(xt→s) obtained by applying the segmenter on the source-like trans-
formed image. Our underlying hypothesis is that the shape of anatomical struc-
ture is consistent across multi-center medical images. The prediction of fs(xt→s)
should follow the regular semantic structures of the lung to fool the Dm, other-
wise, the generator Gt→s would be penalized by the semantic-aware loss:

Lsem(Gt→s,Dm) = Eys [log Dm(ys)] + Ext [log(1 − Dm(fs(Gt→s(xt))))]. (3)

This loss imposes an explicit constraint on the intermediate result of the cyclic
transformation. Its gradients can assist the update of the generator Gt→s, which
benefits the stability of the entire adversarial learning procedure.

2.3 Learning Procedure and Implementation Details

The configurations of the generators and discriminators follow the practice of
[16]. Specifically, both generators have the same architecture consisting of an
encoder (3 convolutions), a transformer (9 residual blocks) and a decoder (2
deconvolutions and 1 convolution). All the three discriminators process 70×70
patches and produce real/fake predictions via 3 stride-2 and 2 stride-1 convo-
lutional layers. The overall objective for the generators and discriminators is as
follows:

L(Gs→t,Gt→s,Ds,Dt,Dm) = LGAN (Gs→t,Dt) + αLGAN (Gt→s,Ds) +
βLcyc(Gt→s,Gs→t) + λLsem(Gt→s,Dm), (4)

where the {α, β, λ} denote trade-off hyper-parameters adjusting the importance
of each component, which is empirically set to be {0.5, 10, 0.5} in our experi-
ments. The entire framework is optimized to obtain:

G∗
s→t,G∗

t→s = arg min
Gs→tGt→s

max
Ds,Dt,Dm

L(Gs→t,Gt→s,Ds,Dt,Dm). (5)

In our SeUDA, the generators {Gt→s,Gs→t} and discriminators {Ds,Dt,Dm}
are optimized altogether and updated successively. Note that the segmenter fs

is not updated in the process of image transformation. In practice, when train-
ing the generative adversarial networks, we followed the strategies of [16] for
reducing model oscillation. Specifically, the negative log likelihood in LGAN was
replaced by a least-square loss to stabilize the training. The discriminator loss
was calculated using one image from a collection of fifty previously generated
images rather than the one produced in the latest training step. We used the
Adam optimizer with an initial learning rate of 0.002, which was linearly decayed
every 100 epochs. We implemented our proposed framework on the TensorFlow
platform using an Nvidia Titan Xp GPU.
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Table 1. Quantitative evaluation results of domain adaptation methods for both lung
segmentations from chest X-ray images.

Methods Right lung Left lung

Dice Recall Precision ASD Dice Recall Precision ASD

S-test 95.98 97.98 94.23 2.23 95.23 96.56 94.01 2.45

T-noDA 82.29 98.40 73.38 10.68 76.65 95.06 69.15 11.40

T-HistM [15] 90.05 92.96 88.05 5.72 91.03 94.35 88.45 4.66

T-FeatDA [9] 94.85 93.66 96.42 3.26 92.93 91.67 94.46 3.80

T-STL [6] 96.91 98.47 95.46 1.93 95.84 97.48 94.29 2.20

CyUDA 94.09 96.31 92.28 3.88 91.59 92.28 91.70 4.57

SeUDA 95.59 96.55 94.77 2.85 93.42 92.40 94.70 3.51

3 Experimental Results

Datasets and Evaluation Metrics. We validated our unsupervised domain
adaptation method for lung segmentations using two public Chest X-ray
datasets, i.e., the Montgomery set (138 cases) [8] and the JSRT set (247
cases) [13]. Both the datasets are typical X-ray scans collected in clinical prac-
tice, but their image distributions are quite different in terms of the disease type,
intensity, and contrast (see the first and fourth column in Fig. 2(a)). The ground
truth masks of left and right lungs are provided in both datasets. We randomly
split each dataset into 7:1:2 for training, validation and test sets. All the images
were resized to 512×512, and rescaled to [0, 255]. The prediction masks were
post-processed with the largest connected-component selection and hole filling.

For evaluation metrics, we utilized four common segmentation measurements,
i.e., the Dice coefficient ([%]), recall ([%]), precision ([%]) and average surface dis-
tance (ASD)([mm]). The first three metrics are measured based on the pixel-wise
classification accuracy. The ASD assesses the model performance at boundaries
and a lower value indicates better segmentation performance.

Experimental Settings. We employed the Montgomery set as source domain
and the JSRT set as target domain. We first established the segmenter on source
training data independently. Next, we test the segmenter under various settings:
(1) testing on source domain (S-test); (2) directly testing on target data (T-
noDA); (3) using histogram matching to adjust target images before testing (T-
HistM ); (4) aligning target features with the source domain as proposed in [9]
(T-FeatDA); (5) fine-tuning the model on labeled target data before testing on
JSRT (T-STL); In addition, we investigated the performance of our proposed
domain adaptation method with and w/o the semantic-aware loss, i.e., SeUDA
and CyUDA.

Comparison of Experimental Results Between Different Methods. As
shown in Table 1, when directly applying the learned source domain segmenter
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Ground Truth T-noDA SeUDATarget Image CyUDA SeUDA Source Image
(a) (b)

T-HistM

Fig. 2. Typical results for the image transformation and lung segmentation. (a) Visu-
alization of image transformation results, from left to right, are the target images
in JSRT set, CyUDA transformation results, SeUDA transformation results, and the
nearest neighbor of xt→s got from source set; each row corresponds to one patient. (b)
Comparison of segmentation results between the ground truth, T-noDA, T-HistM, and
our proposed SeUDA; each row corresponds to one patient.

to target data (T-noDA), the model performance significantly degraded, indi-
cating that domain shift would severely impede the generalization performance
of DNNs. Specifically, the average Dice over both lungs dropped from 95.61% to
79.47%, and the average ASD increased from 2.34 to 11.04 mm.

With our proposed SeUDA, remarkable improvements have been achieved
by applying the source segmenter on transformed target images. Compared with
T-noDA, our SeUDA increased the average Dice by 15.04%. Meanwhile, the
ASDs for both lungs were reduced significantly. Also, our method outperforms
the UDA baseline histogram matching T-HistM with the average dice increased
by 3.97% and average ASD decreased from 5.19 mm to 3.18 mm. Compared with
the feature-level domain adaptation method T-FeatDA, our SeUDA can not only
obtain higher segmentation performance, but also provide intuitive visualization
of how the adaptation is achieved. Notably, the performance of our unsupervised
SeUDA is even comparable to the upper bound of supervised T-STL. In Table 1,
the gaps of Dice are marginal, i.e., 1.32% for right lung and 2.42% for left lung.

In Fig. 2(a), we can visualize typical transformed target images, demonstrat-
ing that SeUDA has successfully adapted the appearance of target data to look
more similar to source images. In addition, the positions, contents, semantic
structures and clinical clues are well preserved after transformation. In Fig. 2(b)
we can observe that without domain adaptation, the predicted lung masks
are quite cluttered. With histogram matching, appreciable improvements are
obtained but the transformed images cannot mimic the source images very well.
With our SeUDA, the lung areas are accurately segmented attributing to the
successful target-to-source appearance transformation.
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Effectiveness of Semantic-aware Loss. We investigated the contribution of
our novel semantic-aware loss designed for segmentation domain adaptation. We
implemented CyUDA by removing the semantic-aware loss from the SeUDA. One
notorious problem of GANs is that their training would be unstable and sensitive
to initialization states [1,12]. In this study, we measured the standard deviation
(std) of the CyUDA and SeUDA by running each model for 10 times under
different initializations but with the same hyper-parameters. We observed sig-
nificant lower variability on the segmentation performance across the 10 SeUDA
models than the 10 CyUDA models, i.e., Dice std: 0.25% v.s. 2.03%, ASD std:
0.16 v.s. 1.19 mm. Qualitatively, we observe that the CyUDA transformed images
may suffer from distorted lung boundaries in some cases, see the third row in
Fig. 2(a). In contrast, adding the semantic-aware loss, the transformed images
consistently present a high quality. This reveals that the novel semantic-aware
loss contributes to stabilize the image transformation process and prevent the
distortion in structural contents, and hence contributes to boost the performance
of segmentation domain adaptation.

4 Conclusion

This paper proposes a novel approach SeUDA for unsupervised domain adapta-
tion of medical image segmentation. The SeUDA leverages GANs to transform
the target images to resemble source images and generalize the source segmen-
tation DNN directly on the transformed images. We design a novel objective
which composes a GAN loss for mapping data distributions, a cycle-consistency
loss to preserve the pixel-level content, and a semantic-aware loss to enhance
the structural information. Our method is highly competitive with the super-
vised transfer learning on the task of lung segmentation in chest X-rays. Our
proposed SeUDA solution is general and can inspire more researches on domain
adaptation problems in medical image computing.
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